At-line coupling of LC-MS to bioaffinity and selectivity assessment for metabolic profiling of ligands towards chemokine receptors CXCR1 and CXCR2.
نویسندگان
چکیده
This study describes an analytical method for bioaffinity and selectivity assessment of CXCR2 antagonists and their metabolites. The method is based on liquid chromatographic separation (LC) of metabolic mixtures followed by parallel mass spectrometry (MS) identification and bioaffinity determination. The bioaffinity is assessed using radioligand binding assays in 96-well plates after at-line nanofractionation. The described method was optimized for chemokines and low-molecular weight CXCR2 ligands. The limits of detection (LODs; injected amounts) for MK-7123, a high affinity binder to both CXCR1 and CXCR2 receptors belonging to the diaminocyclobutendione chemical class, were 40pmol in CXCR1 binding and 8pmol in CXCR2 binding. For CXCL8, the LOD was 5pmol in both binding assays. A control compound was always taken along with each bioassay plate as triplicate dose-response curve. For MK-7123, the calculated IC50 values were 314±59nM (CXCR1 binding) and 38±11nM (CXCR2 binding). For CXCL8, the IC50 values were 6.9±1.4nM (CXCR1 binding) and 2.7±1.3nM (CXCR2 binding). After optimization, the method was applied to the analysis of metabolic mixtures of eight LMW CXCR2 antagonists generated by incubation with pig liver microsomes. Moreover, metabolic profiling of the MK-7123 compound was described using the developed method. Three bioactive metabolites were found, two of which were (partially) identified. This method is suitable for bioaffinity and selectivity assessment of mixtures targeting the CXCR2. In contrary to conventional LC-MS based metabolic profiling studies done at the early lead discovery stage, additional qualitative bioactivity information of drug metabolites is obtained with the method described.
منابع مشابه
Metabolic Profiling of Ligands for the Chemokine Receptor CXCR3 by Liquid Chromatography–Mass Spectrometry coupled to Bioaffinity
Metabolic profiling of ligands for the chemokine receptor CXCR3 by liquid chromatography–mass spectrometry coupled to bioaffinity assessment. Abstract Chemokine receptors belong to the class of G protein−coupled receptors and are important in the host defense against infections and inflammation. However, aberrant chemokine signaling is linked to different disorders such as cancer, central nervo...
متن کاملMetabolic profiling of ligands for the chemokine receptor CXCR3 by liquid chromatography-mass spectrometry coupled to bioaffinity assessment
Chemokine receptors belong to the class of G protein-coupled receptors and are important in the host defense against infections and inflammation. However, aberrant chemokine signaling is linked to different disorders such as cancer, central nervous system and immune disorders, and viral infections [Scholten DJ et al. (2012) Br J Pharmacol 165(6):1617-1643]. Modulating the chemokine receptor fun...
متن کاملDevelopment of a systemically-active dual CXCR1/CXCR2 allosteric inhibitor and its efficacy in a model of transient cerebral ischemia in the rat.
The chemokine receptors CXCR1 and CXCR2 present on polymorphonuclear neutrophils (PMN), bind the chemokine CXC ligand 8 (CXCL8)/interleukin-8 (IL-8), and have a key role in PMN recruitment in inflammation. Based on the structure of reparixin, a small-molecular-weight allosteric inhibitor of CXCR1, we designed a dual inhibitor of CXCR1 and CXCR2 with a longer in vivo half-life, DF2156A. This mol...
متن کاملActin filaments are involved in the regulation of trafficking of two closely related chemokine receptors, CXCR1 and CXCR2.
The ligand-induced internalization and recycling of chemokine receptors play a significant role in their regulation. In this study, we analyzed the involvement of actin filaments and of microtubules in the control of ligand-induced internalization and recycling of CXC chemokine receptor (CXCR)1 and CXCR2, two closely related G protein-coupled receptors that mediate ELR-expressing CXC chemokine-...
متن کاملExpression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis.
Neutrophils (polymorphonuclear neutrophils; PMN) and a redundant system of chemotactic cytokines (chemokines) have been implicated in the pathogenesis of the acute respiratory distress syndrome in patients with sepsis. PMN express two cell surface receptors for the CXC chemokines, CXCR1 and CXCR2. We investigated the expression and function of these receptors in patients with severe sepsis. Com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
دوره 1002 شماره
صفحات -
تاریخ انتشار 2015